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[11 Signal matching is a powerful tool frequently used in paleoclimate research, but it is enormously time-
consuming when performed by hand. Previously proposed automatic correlation techniques require very good
initial fits to find the correct alignment of two records. A new technique presented in this paper utilizes dynamic
programming to find the globally optimal alignment of two records. Geological realism is instilled in the
solution through the definition of penalty functions for undesirable behavior such as unlikely changes in
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produces accurate, high-resolution results with much less effort than hand tuning or preexisting automated
correlation techniques. INDEX TERMS: 4267 Oceanography: General: Paleoceanography; 4294 Oceanography: General:
Instruments and techniques; 4299 Oceanography: General: General or miscellaneous; KEYWORDS: signal correlation, dynamic

programming, wiggle matching, composite depth

Citation:

Lisiecki, L. E., and P. A. Lisiecki, Application of dynamic programming to the correlation of paleoclimate records,

Paleoceanography, 17(D4), 1049, doi:10.1029/2001PA000733, 2002.

1. Introduction

[2] Paleoclimate reconstructions are based largely on the
interpretation of diverse climate proxy records. Chrono-
stratigraphic correlation among records is often accom-
plished by matching signals between climate proxies and
orbital parameters or between multiple climate proxies.
Signal matching is typically performed by eye in a tedious
and time-consuming process [Shackleton et al., 1995; Prell
et al., 1986]. Previous attempts to automate signal corre-
lation [Martinson et al., 1982] and orbital tuning [Briigge-
man, 1992; Yu and Ding, 1998] can only find locally
optimized solutions and hence require good initial align-
ments. In this paper we present a new technique based on
dynamic programming that overcomes this problem and
others encountered by previous techniques. Our dynamic
programming software and instructions for its use are
available for download under the “Data & Software” link
at http://pixie.geo.brown.edu/esh/paleo.html.

[3] A good automatic correlation technique should be
easy to use, versatile, and at least as accurate as results
produced by hand. The produced alignment should be
physically realistic and globally optimal. In the context of
signal matching, physical realism requires a monotonically
increasing mapping function to preserve the sequence of
events in each series and reasonable implied accumulation
rates. Techniques that can only find locally optimal sol-
utions might simply force each peak in one signal to fit to
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the nearest peak in the other signal, requiring the user to
provide an accurate initial guess of the peaks’ correlations.
However, an algorithm that compares all possible align-
ments of two series to find the globally optimal one
eliminates the need to produce a good initial guess and
the potential error that accompanies such a guess. Another
important gauge of a technique’s performance is its ability
to match signals with the complexities frequently encoun-
tered in paleoclimate proxies such as noise, gaps, mis-
matches, and changes in accumulation rate. We
demonstrate that our dynamic programming technique can
produce physically realistic, globally optimal solutions for
the wide variety of signals encountered in paleoclimate
research.

[4] Dynamic programming describes a class of algo-
rithms, typically used in optimization problems, that divide
one problem into many subproblems and store the solutions
of these subproblems in a table to avoid duplicate compu-
tation. The technique has been used effectively in other
areas of geology, e.g., in pore space analysis [Eggleston and
Peirce, 1995] and in the correlation of geologic strata
[Waterman and Raymond, 1987], but to our knowledge this
is the first time it has been applied effectively to paleocli-
mate data. The dynamic programming algorithm that we
developed divides each series into many small intervals and
calculates an alignment score for each possible mapping of
these intervals. The technique constrains the sequential
ordering of the intervals, ensuring that the derivative of
the matching function is not negative. The score of each
mapping is primarily determined by the square of the
difference between the two signals. Penalty functions added
to the alignment scores allow the user to minimize accu-
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mulation rate changes or to define other criteria for deter-
mining an optimal alignment. The evaluation of a wide
range of mapping functions precludes the algorithm from
becoming trapped in a local solution. No initial guess of a fit
is required, and the starting and ending points of the two
series may be different.

[5s] In the following section we review other proposed
automatic signal correlation techniques. The description of
our procedure begins with a simple example to which
dynamic programming may be applied and goes on to
explain how this example is altered to best suit the problem
of correlating paleoclimate records. We also describe the
techniques that we find effective for the assignment of
penalty functions and parameter values. The results section
contains a comparison of our technique with hand-tuned
data and an evaluation of its ability to align an artificially
distorted signal. We demonstrate the algorithm’s ability to
match a variety of signals, including those with noise, gaps,
and abrupt changes in accumulation rates. Finally, we
explore some of the technique’s potential applications and
discuss its limitations.

2. Background

[6] One previous approach to inverse signal correlation
[Martinson et al., 1982] constructs a mapping function
from a linear trend modified by a truncated Fourier series.
The Fourier coefficients are adjusted according to the
gradient of the curves’ correlation. This technique requires
a very good initial guess because it is susceptible to finding
local maxima in correlation. Martinson et al. [1982] suggest
that, for some data, fitting the low frequency component of
the signal may produce a good initial guess for the fit of the
entire signal, but this technique may not work well if
significant sedimentation rate changes occur in the records.
Shure and Chave [1984] observe that the truncated Fourier
series produces “artificial, high-frequency fluctuations in
the mapping functions.” They suggest a parabolic spline
parameterization, but Martinson et al. [1984] argue that
splines make the algorithm more likely to find local
solutions. The dynamic programming technique that we
propose is superior to these techniques because it is not
susceptible to finding local solutions and requires no initial
guess.

[7] Most subsequent research has focused on finding age-
depth (as opposed to depth-depth) relations through orbital
tuning. In orbital tuning a data record is matched to an
orbital forcing function that has a known age relation.
Complications with orbital tuning include the selection of
a forcing curve, unknown lag times, nonlinear climate
responses, and noise. Generally, the climate signal and
forcing function are fairly dissimilar. One common orbital
tuning technique is to use bandpass filters on proxy records
to compare their orbital frequency components with the
same frequency components of the forcing function [e.g.,
Imbrie et al., 1984; Lourens et al., 1996]. However,
uncertainty in the age-depth relation makes it difficult to
define a filter that consistently preserves the orbital fre-
quency without also including significant power outside of
the desired frequency range [Martinson et al., 1987]. The
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automated correlation technique presented in this paper
does not perform orbital tuning in part because of these
added complexities, but we present here a description of
two automated orbital-tuning techniques that might also be
applied to signal correlation.

[8]1 Yu and Ding [1998] propose an automated orbital
tuning technique that maximizes the correlation of the 21
kyr and 41 kyr components of a signal with precession and
obliquity curves respectively using a modified version of
dynamic programming [Rdde and Westergren, 1995]. The
start and end ages of the signal are fixed, and one-at-a-time
the age of each interior point is assigned the age between its
two neighbors’ ages that maximizes the curves’ correlation
coefficients while all of the other points in the series remain
fixed. The process is iterated until the correlation coeffi-
cients are maximized. Yu and Ding [1998] allow only one
point to move at a time because they must be able to
calculate the filtered component of the signal at every step.
Therefore, their algorithm no longer possesses all of the
properties of dynamic programming; it requires a good
initial guess and may not find the globally optimal solution
of each problem, especially if accumulation rates change
significantly at some point in the series. Additionally, the
technique places no constraints on implied accumulation
rates.

[o] Briiggeman [1992] proposes an automated tuning
technique in which a parameterized frequency response
function is tuned to fit the climate record to a forcing
function. The algorithm uses a conjugate gradient method
to adjust the time nodes of the data and the parameters of
the frequency response function to optimize six penalty
functions defined by (1) the difference between the data and
the model, (2) the deviation from the initial guess, (3)
implied accumulation rate changes, (4) estimated ages of
dated points, (5) the behavior of the frequency response
function, and (6) the sign of the derivative of the age-depth
function. Our dynamic programming technique can incor-
porate penalties similar to all of these except point 5
because no frequency response model is used and point 6
because the derivative of the age-depth function is inher-
ently positive. Briiggeman’s [1992] technique differs from
our dynamic programming algorithm in that it does not
discretize accumulation rates and the solution that it finds
using the conjugate gradient method may be only a local
minimum in the penalty functions.

[10] Previously developed dynamic programming techni-
ques for the correlation of geologic strata [Waterman and
Raymond, 1987] are similar to our algorithm, but they match
defined geologic strata based on properties such as compo-
sition and thickness rather than signals that have not been
divided into strata. The evenly spaced intervals into which
our algorithm divides signals act in many ways like the strata
in Waterman and Raymond’s [1987] technique; however,
our algorithm compares a sequence of unevenly spaced data
points within each interval rather than the bulk values typical
of a single stratum. Waterman and Raymond’s [1987]
technique is less sophisticated in its consideration of the
relative sedimentation rates of the two stratigraphic sequen-
ces being matched but includes a more elegant treatment of
stratigraphic gaps than our current algorithm. We discuss our
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algorithm’s treatment of gaps and plans for its improvement
in the section on paleoclimate applications.

3. Procedure
3.1. Simple Example

[11] First, let us consider an example problem, illustrated
in Figure 1, in which we match all of the » data points in a
series A to a subset of the m points in the series B so as to
minimize the square of their differences. The only constraint
we impose is that the sequence of points in A must be
preserved. One way to solve this problem is to construct a
table, as shown in Figure 1b, in which each column repre-
sents a point in series A, and each row represents a point in
series B. Each table entry is a “score” equal to the square of
the difference between the point in series A represented by
that column and the point in series B given by that row. For
example, the intersection of the third column with the second
row has a score of 0.25, which is the square of the difference
between the third point in A, 1.5, and the second point in B,
1.0. Because the score represents the difference between the
two signals, smaller scores represent better fits. The best
alignment of series A can be found by assigning one point in
series B (row) to each point in series A (column) such that
the sum of the scores is minimized and such that the
sequence of points in A is preserved (i.e., no point in series
A [column] is assigned to a point in series B [row] that
precedes the point in B [row] assigned to the previous point
in A [column)).

[12] The structure of this problem makes it especially well
suited to solution by dynamic programming. Matches of
subsets of series A to subsets of series B serve as subpro-
blems whose solutions are stored in a dynamic program-
ming table. In the following description of our technique,
we focus on the modifications to the standard technique of
dynamic programming appropriate for application to strati-
graphic alignment. A thorough discussion of the theory and
techniques of dynamic programming is given by Cormen
et al. [1990].

3.2. Modifications for Stratigraphic Alignment

[13] In the case of stratigraphic alignment, we want to
make several modifications to the simple example above. We
want to constrain an optimal solution’s accumulation rate to
realistic values, allow points in series A to fall between
points in series B, and calculate a score by comparing points
in both A and B with their corresponding, linearly interpo-
lated values from the other series. We accomplish all of these
goals by dividing each series into several hundred same-size
depth intervals and using dynamic programming to search
for the best alignment of the two series’ intervals. These
intervals make the alignment problem tractable by grouping
data points, which may be irregularly spaced or more
numerous than necessary, into a manageable number of
evenly spaced depth or time intervals.

[14] Groups of intervals are mapped to one another in
ratios taken from a set of plausible relative accumulation
rates or mapping function slopes. This set of relative rates,
defined by the user, adds a third dimension to the table of
values constructed by the dynamic programming algorithm.
A table entry exists for the alignment of each interval in
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Figure 1. A simple example. In this example we wish to
match the points in series A to a subset of points in series B
so as to minimize the sum of the square of their differences.
(a) Series A with n = 4 points will be matched to a subset of
the m = 5 points in series B. (b) We subtract each point in A
by each point in B, square the differences, and place the
results in a table in which each column represents a point in
series A and each row represents a point in series B. The
double boxes represent the alignment with the smallest sum.
(c) Series A aligned to series B according to the solution
shown in Figure 1b.

series A with each interval in series B at each possible
relative rate. For each table entry we calculate a score, which
is the sum of all applicable penalties, including any rate or
rate change penalties, and the sum of the squared differences
of all of the points within the matched intervals with the
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linearly interpolated, corresponding values of the other
series. The best alignment is the path from the beginning
to end of the series that has the lowest cumulative score. This
alignment is used to adjust the time or depth axis of the first
series to fit the other, target series.

[15] By filling in the matrix starting with the beginning of
one of the series, we can compute the cumulative penalty
for a proposed match as we go along, add penalties for
changes in accumulation rate, and store information to
allow for the recovery of the optimal alignment. The
cumulative penalty stored in the table is calculated using
the technique illustrated in Figure 2. In this example, we
calculate the smallest cumulative score for matching the
intervals 7 and i + 1 in series A with the intervals n, n + 1,
and n + 2 in series B. This is the case where the intervals i
and n are matched at a relative rate of 2:3. Because the
beginnings of intervals i and » are assumed to match, the
ends of intervals i — 1 and n — 1 must also match, so we
need to determine which relative accumulation rate for
i — 1 and n — 1 produces the best cumulative fit. We
define a penalty function for changes in relative accumu-
lation rate and search through all of the matches of i — 1
and n — 1 to determine for which the sum of cumulative
score and rate change penalty to 2:3 is smallest. This value
is added to the sum of the squared differences of the points
in the intervals 7, i + 1, n, n + 1, and n + 2 and stored in the
appropriate location in the table. In a separate table we
record the selected relative rate for i — 1 and n — 1 so that
we may recover the path of our alignment should it produce
the lowest cumulative score.

3.3. Penalty Functions and Parameterizations

[16] The score for each table entry may include a variety
of penalty functions. For example, because the first interval
of series A is not constrained to match the first interval of
series B, a “no match” penalty, p, is added for each interval
at the beginning or end of either series that is not paired
with an interval from the other series. The magnitude of this
penalty should be set according to how much overlap is
expected between the two series. A penalty function can
also be used to create tie points between the two series in
order to add information from stratigraphic markers or
correct mismatches produced by the algorithm. In this case,
a penalty is added when an interval containing a tie point is
matched. We use a penalty that is proportional to the square
of the distance between the pair of tie points in the
proposed match.

[17] The exact set of penalties used by the algorithm
should be selected to best suit the type of data being
matched. For the results presented in this paper, we use a
rate change penalty of the form, yn?, where vy is a rate
change penalty coefficient, and 7, is the number of relative
rate increments between two adjacent intervals. We choose
a penalty proportional to n? to more strongly discourage
fast changes in accumulation rate, but any desired function
may be used. For example, if core data from two holes at
the same site are matched, the relative accumulation rates
of the cores may change many times due to compression
and stretching of the cores during the drilling and extrac-
tion process, so a penalty for changes in relative rate may
be undesirable. In this case a simple penalty for relative
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Figure 2. Matching two intervals in series A with three
intervals in series B. (a) The intervals i and i + 1 in series A
are stretched to fit across the intervals n, n + 1, and n + 2 in
series B. Interpolation is used to calculate the difference A
between the two signals at the location of each data point
(solid circles). The sum of the squares of A, equal to 1.5 in
this example, is the score for aligning these intervals. (b)
The minimum cumulative score for this alignment will be
stored in the table entry that corresponds to i, n, and the
relative rate 2:3. The minimum score is found by
determining all possible preceding interval matches, adding
the necessary rate change penalty for switching from those
previous relative rates to 2:3, selecting the minimum sum,
and adding 1.5 to it. The previous relative rate selected is
stored in a separate table to allow us to reconstruct our path
later. This procedure is followed for every table entry, and
when the table is full, the smallest of the entries matching
the last interval of A with the last interval of B will contain
the cumulative score of the optimal alignment of the two
series.

rates beyond likely levels of distortion produces better
results.

[18] The algorithm can handle data series with a wide
variety of characteristics. However, the data series to be
matched should be normalized if they do not have similar
means and standard deviations. The optimal weighting of
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Table 1. Algorithm Parameters

Parameters Guidelines Typical Values®

0.01-0.001 of signal length

Interval size X smaller intervals increase alignment resolution

runtime increases as the product of the number of intervals in each series
more intervals may be desirable for data sets with more resolution or length
more intervals should be used when using higher relative-rate resolution, e.g.,

6:5, 7:6, 8:7

“No match” penalty p penalty reflects degree of signal overlap 0.1-10
if signals’ endpoints are known to match, p should be very high
p should be proportional to interval size and average difference between signals

Rate change penalty coefficient vy noisy or dissimilar signals should have higher values of -y 0.1-10

signals with very small intervals should have high values of y to prevent
artificial fluctuations in relative rate

penalties for extreme relative rates in addition to rate change may also be helpful
for difficult matches

#For use with normalized data.

penalty functions may depend on the means and standard
deviations of the data series because the penalties are added
to the square of the two signals’ difference. The beginning
and ending points of the two series do not need to corre-

spond, but the “no match” penalty, p, should be adjusted
according to the estimated degree of series overlap. We
assume that linear interpolation between data points is valid
and that the relative accumulation rate and position of the
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Figure 3. Matching an artificially distorted signal. (a) A normalized SPECMAP curve (thick shaded
line) and an artificially distorted SPECMAP curve with a signal-to-noise ratio of 0.66 (thin line). (b) The
artificial signal (thin line) after alignment with the normalized SPECMAP curve (thick shaded line) by
the dynamic programming algorithm with a run time of 48 s using the parameter values: X\ = 2500 years,
p =15, and y = 10. (c) The mapping function used to produce the artificial signal (thick shaded line) and
the mapping function reconstructed by the dynamic programming algorithm (thin line). (d) The slope of
the real mapping function (solid line) and the relative accumulation rates (crosses) used by the algorithm
to produce the alignment. (e) The age difference between the true age of each point and that determined
by the automatic alignment.
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Figure 4. Cross sections of the table of cumulative scores. (a) A contour map of the cumulative scores
recorded in the table produced by the dynamic programming algorithm for the alignment shown in Figure
3 at the relative rate of 3:1 overlain by the algorithm’s reconstructed mapping function (thick line). Notice
that from 0.5 to 0.7 Ma, where the slope of the mapping function is approximately 3, the mapping
function lies along a valley defined by the contours. The contour lines mark score values of 200 (dark
shading) to 1000 (white area) in increments of 100. (b) The table’s scores for the relative rate of 2:3

displayed in the same format and with the same mapping function.

two series may be discretized without introducing significant
error to the solution.

[19] The resolution of the produced alignment increases
as the size of the intervals used for matching, X\, decreases,
but the run time of the algorithm increases as the product
of the number of intervals in the two series. In contrast,
run time increases only linearly with the number of data
points in the series. Because intervals are matched in
groups and effectively discretize a continuous parameter
such as depth or time, intervals that are smaller than the
average spacing between data points may still be mean-
ingful. The number and size of the intervals do not have to
be the same for both series, but the set of relative rates
defined by the user should reflect the approximate ratio at
which they should be matched. For example, if a series
matches only about half of a given target signal, the
algorithm could either divide the series into half as many
intervals as the target and use a set of relative rates
centered about 1:1, or it could use the same number of
intervals for both series and have the relative rates cen-
tered about 2:1. Any number of relative accumulation rates
can be defined; we have found good results for many data
sets using 13 relative rates between 3:1 and 1:3, with the
greatest concentration of rates near 1:1. Over a distance of
many intervals, the algorithm can effectively reproduce
any relative accumulation rate within the range of defined
rates by dithering between rates on either side of the true
rate. The error that results from this approximation will
depend on the resolution of the defined rates and the size
of the series’ intervals.

[20] We recommend that when beginning a correlation
with our algorithm, the user select parameter values accord-

ing to the guidelines in Table 1. One should start with
somewhat large intervals and tune the “no match” and rate
change penalties until one obtains an approximately correct
alignment. If tuning the penalty functions does not create a
good alignment, the interval size is probably too large, but
occasionally a couple of tie points will need to be defined
by the user. After obtaining a reasonable alignment, pro-
gressively decrease the interval size, X\, until the degree of
signal correlation stabilizes to prevent artificially high
resolution in the optimal alignment. Typically, one should
decrease the “no match” penalty in proportion to the
change in interval size because it is applied to each interval.
However, the rate change penalty coefficient, -y, may need
to be increased as X\ decreases because the existence of
more locations at which the rate can change will allow the
rate to change more quickly. With a little experience, an
optimal tuning can usually be completed in less than 10
iterations, with each iteration taking no more than a couple
of minutes. Little to no change in the parameters should be
needed between tuning sets of similar data, and additional
automation in the future may further reduce the number of
tuning steps required.

4. Evaluation of Algorithm Results
4.1. Testing With an Artificially Distorted Signal

[21] To determine the dynamic programming algorithm’s
sensitivity to noise and changes in sedimentation rate, we
distort a normalized SPECMAP curve [Shackleton et al.,
1990] with artificial noise and changes to its time axis and
then map it back to the undistorted curve. Figure 3a shows
the original SPECMAP curve and the distorted one, which
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has a signal-to-noise ratio of 0.66 and a relative sedimenta-
tion rate that increases linearly from 1 to 3 over the first half
of the data, instantaneously drops to 0.5, and then linearly
increases back to 1. Both series have 490 data points, and the
average time between points is ~3000 and ~4000 years for
the original and artificial signals, respectively. We describe
the time axis of the artificial signal in terms of years, but
because of the distortion we have applied to it, one “year” of
the artificial signal may represent as many as two real years
or as little as one third of a year.

[22] The match shown in Figure 3b is obtained using an
interval size, X\, of 2500 years for each series, a “no match”
penalty, p, of 5.0 per interval, and a rate change penalty
coefficient, vy, of 10. The program runs in 48 s on a 750
MHz Pentium III with 128 MB of RAM. Most remarkably,
this alignment is obtained with no tie points; the Martinson
et al. [1982] technique requires at least five or six pairs of
tie points to match these signals correctly even when the
artificial signal has no added noise. The mapping function
produced by our algorithm is virtually indistinguishable
from the one used to construct the signal; the correlation
coefficient between the two mapping functions is 0.999987.
However, the plot of sedimentation rate in Figure 3d shows
that the instantaneous rate change has been stretched over
20 kyr, producing a maximum error in estimated age of 12.9
kyr. The stair step pattern in Figure 3d is the result of the
discrete nature of the defined relative rates. Increasing the
number of defined rates results in a more accurate solution
with a larger number of smaller steps but also increases run
time.

[23] The dynamic programming algorithm constructs a
three-dimensional table of cumulative scores to calculate
efficiently the optimal alignment of the two signals. Figure
4a is a contour plot of the data stored in the slice of the table
representing a relative matching rate of 3:1. The value at
each position in the plot is the minimum cumulative score
calculated for an alignment from the start of the series to a
pair of intervals, with that pair matched at a rate of 3:1. The
optimal mapping function follows the three-dimensional
path through this table that produces the lowest cumulative
score at the end of the series. This mapping function is
projected onto two dimensions and displayed over the
contour map in Figure 4a. Where the slope of the optimal
mapping function is 3:1, it is passing through the part of the
table that we have plotted and, therefore, it follows the
contour plot’s valley in this region. For comparison, in
Figure 4b the mapping function is plotted with the table
values for the relative rate of 2:3.

4.2. Parameter Sensitivity

[24] We examine the sensitivity of the algorithm to its
parameters by varying each parameter individually while
performing the same match as above except with a signal-
to-noise ratio of 1.0 in the artificial signal. In Figure 5 we
plot two measures of the amount of error in each align-
ment, the maximum age error of the produced fit and
10°(1 — p), where p is the correlation coefficient of the
true and produced mapping functions. These two indica-
tors of fit behave similarly but not identically. One
important feature of these curves is their flat, wide
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Figure 5. Parameter sensitivity. The same artificial signal
as in Figure 3 but with an increased signal-to-noise ratio of
1.0 matched to the SPECMAP curve while varying one
parameter at a time. Each star is 10°(1 — p), where p is the
correlation coefficient between the real and empirical
mapping functions for a particular set of parameter values.
Each open diamond is the maximum difference between the
real and empirical ages of the data points for the mapping
produced by that set of parameters. (a) Errors produced by
different interval sizes, X\, in kiloyears with a constant “no
match” penalty, i, of 100 and a rate change penalty of 5n7.
The run times for these experiments range from 1.1 second
for X = 50,000 years to 225 s for X\ = 1428 years. (b) Errors
produced by different “no match™ penalties with a constant
interval size of 10 kyr and a rate change penalty of 5172, The
run time for this interval size is about 5 s. (¢) Errors
produced by different coefficients to the rate change penalty
with X = 10 kyr and p = 100.

minima; these demonstrate that small deviations from
optimal parameter values will not greatly affect the accu-
racy of a fit. Below we describe the specific effects of
variation in each parameter.

[25] Increasing the size of intervals reduces the number of
locations at which the algorithm may adjust the relative rate
of the two signals and thus increases error. However,
intervals that are too small may unnecessarily increase run
time and may make the mapping more sensitive to noise by
allowing the relative rate of the series to change more
rapidly. “No match” penalties that are too small cause the
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Figure 6. Automatic and hand tuning. (a) A normalized benthic oxygen isotope curve for ODP site
1012 independently tuned to a common target (dash-dotted line) by hand (thin line [Herbert et al., 20017)
and by our dynamic programming algorithm (thick shaded line) with a run time of 23 s and parameter
values of X = 5 cm and 650 years, . = 0.2, and y = 0.3. (b) The difference in estimated age of the two
tuned signals. (c) The accumulation rate versus time predicted by automatic (shaded line) and hand (solid
line) tuning. Possible accumulation rates for the automatically tuned curve range from 3 to 17.5 cm/kyr.
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Figure 7. Matching GRIP and GISP2 curves. (a) The GRIP (shaded line) and GISP2 (solid line) ice
oxygen isotope curves versus their respective published timescales [Johnsen et al., 1997; Grootes et al.,
1993]. (b) The GISP2 curve aligned to the GRIP curve by the dynamic programming algorithm with a
run time of 71 s, X\ = 200 years, p = 50, and -y = 1. (c) The duration of GISP2 events relative to GRIP
events given by their respective timescales and the relative rates used by the algorithm to produce the
presented alignment.
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Figure 8. Matching two different proxies. (a) The GRIP oxygen isotope record from 20—124 ka,
normalized and detrended (shaded line) and a normalized nitrogen isotope curve (solid line) from the
Arabian Sea [Altabet et al., 2002] from 4.0 to 26.7 m, plotted versus an arbitrary linear age scale. (b)
Alignment produced by our dynamic programming algorithm in 17 s with the aid of tie points at 21.5 and
123.5 ka and with X\ = 10 cm and 500 years, p = 1.0, and y = 4.0. (¢c) Accumulation rate (cn/kyr) versus
time (ka) in the Arabian Sea implied by the presented alignment.

algorithm to align only the very end of one series with the
very beginning of the other, producing very large errors. In
this example, the “no match” penalties above a certain
threshold have no effect because the two series completely
overlap. If the two series did not have the same end points,
very large ““no match” penalties would also produce errors
because the two series’ ends would be forced to match. High
rate change penalties prevent the algorithm from changing
rates when necessary to best match the signals. Lower rate
change penalties allow more dithering between rates but
cause distortion where the algorithm fits the signal too
closely to the noise. Extremely low rate change penalties
will allow physically unrealistic results, such as multiple
peaks from one series squeezed into one peak from the other.

4.3. Paleoclimate Applications

[26] The dynamic programming technique has many
potential applications in paleoclimate research. Above we
demonstrated its ability to accurately align a very noisy
artificial signal with a large, instantaneous rate change. We
now examine its ability to align different types of real data
to demonstrate its applicability to several important areas of
paleoclimate research. For these applications, automated
signal correlation can not only save time and effort but also
provide a more consistent set of alignment criteria.

[27] Our algorithm is well suited to aid in orbital-scale
tuning because with very little effort our automated algo-
rithm produces results extremely similar to those produced
by hand tuning, which is the most commonly employed

correlation technique. Figure 6a compares the results of our
automated tuning and an independent hand tuning [Herbert
et al., 2001] of a normalized benthic oxygen isotope curve
for OPD site 1012 to a common target. The automated
tuning uses parameter values of X =5 cm and 650 years, p =
0.2, and y = 0.3. The algorithm does an excellent job of
aligning the isotope curve to the target despite somewhat
large differences between the two. The automated alignment
agrees very well with the hand-tuned results on both the
large and fine scale; the largest difference in estimated age
of the two tuned signals is only 6200 years back to 350 ka
and 17.3 kyr over the full 600 kyr range. Additionally,
Figure 6¢ shows that the accumulation rates produced by
the automated alignment are similar in character to rates
derived from hand tuning.

[28] The match between GRIP [Johnsen et al., 1997] and
GISP2 [Grootes et al., 1993] oxygen isotope records in
Figure 7 demonstrates that our algorithm does an excellent
job of matching fine-scale features. For this match, X\ =200
years, . = 50, and y = 1. Because the algorithm matches
signals using such small intervals, the high- and low-
frequency components of the signals can be matched con-
currently. Hence, our algorithm can be used to correlate
millennial scale features or to produce stacked data without
distorting sharp, high-resolution features. Another interest-
ing feature that stands out in our results is the correlation
between the isotopic measurement and the relative accumu-
lation rate of the two signals. High isotopic values are
accompanied by high relative rates because the peaks of
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the GISP2 series are wider than the peaks in the GRIP
series, which serves as the reference signal in this example.
Hence, we may also think of the relative rate as the degree
to which a signal must be compressed in order to match its
reference signal.

[29] The algorithm can also be used to match two proxies
representing different climate signals, but it may be neces-
sary to detrend or otherwise slightly modify the signals to
make their values sufficiently similar. In Figure 8, a
normalized nitrogen isotope curve from the Arabian Sea
[Altabet et al., 2002] is matched to a linearly detrended and
normalized GRIP oxygen isotope curve [Grootes et al.,
1993] . We add two tie points, one on either end of the
series, to improve the alignment of the ends of the data. The
parameter values used are X = 10 cm and 500 years, p =
1.0, and y = 4.0. The algorithm performs extremely well
and is not led astray by peaks that appear in only one of the
two signals (e.g., peaks in the GRIP signal at 46, 53, 61,
and 106 ka). In places where the two signals are quite
different (e.g., 85 and 105 ka), the alignment may be
adjusted with changes in the penalty weightings or new
tie points, and the best alignment is a matter of interpreta-
tion just as it would be with any hand-tuned alignment. Of
course, two signals are not necessarily synchronous, and
one must take into account any error that may be caused by
leads or lags between signals if attempting to use this
technique to date events.

[30] The creation of composite depth scales for sediment
cores is another area where our dynamic programming
technique could be very useful. One useful feature of our
algorithm is that it can match multiple core properties,
such as reflectance and magnetic susceptibility, simulta-
neously. However, the main challenge for any automated
algorithm in correlating data from cores is dealing with
the gaps that occur between core sections. Currently, our
algorithm assumes a linear interpolation across gaps and
penalizes for the differences between two signals accord-
ingly. This technique is robust enough to find an approx-
imate mapping between two holes but produces some
distortion around large gaps. One can use this approximate
mapping to identify good tie points at the edges of these
large gaps and then find an extremely good match.
Figures 9 and 10 compare the results of this technique
with the published composite depth mapping for a portion
of ODP Hole 925 [Curry et al., 1995]. Soon we hope to
develop special instructions for dealing with core gaps and
eliminate the need for the manual addition of tie points.
This adaptation should also support the correlation of
more than two holes and handle incomplete recovery
realistically.

[31] Eventually, our dynamic programming technique
may not only reduce the labor required to create composite
depth scales but also produce more accurate results. The
usual convention in the creation of composite depth scales is
to define a constant offset from meters below seafloor
(mbsf) depth for each 9-m core, but within-core depth-scale
changes are often needed to align features on scales of <9 m
due to stretching and squeezing within cores [Hagelberg
et al., 1992]. The mapping function produced by our
dynamic programming algorithm with 10 tie points provides
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Figure 9. Correlation between holes from ODP Site 925.
Mapping functions produced by the dynamic programming
algorithm when aligning reflectivity data from Holes C and
D at ODP Site 925. One mapping function is produced
using no tie points (thin line), and one (thick shaded line) is
produced by placing tie points (crosses) on both sides of 6
of the 11 gaps in the series and setting X = 10 cm, p = 100,
and vy = 1.0. Both reflectivity series have nearly 1500 data
points, and the program run time for this problem is 73 s.
Circles mark the correlation of Holes C and D at specific
depths according to the composite depth scale provided in
the ODP initial report [Curry et al., 1995].

a more consistent alignment, with a correlation coefficient of
0.8307 between the two reflectance signals in Figure 10,
than the published composite depth scale [Curry et al.,
1995], which yields a correlation coefficient of 0.5843.
These results suggest that the offset for each core is not
constant, probably due to distortion during the drilling and
extraction process. The traditional technique for the creation
of composite depth scales also has a tendency to artificially
inflate depths, as illustrated in Figure 10b, but dynamic
programming may be able to overcome this distortion. We
currently have plans to adapt our dynamic programming
technique for the easy production of higher resolution
composite depth scales with less distortion.

4.4. Limitations

[32] Unfortunately, dynamic programming is not well
suited to the construction of age-depth scales by orbital
tuning because, unlike signal difference, Fourier analysis
and band-pass filtering cannot easily be broken into small
enough subproblems for high-resolution alignment. How-
ever, one might use the dynamic programming technique to
match climate signals to proposed insolation response func-
tions. An automated technique would be very useful for
considering a large number of possible response functions.
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Figure 10. Producing a composite section. (a) Reflectivity plotted versus meters below seafloor (mbsf)
for cores from ODP site 925, Holes C (thin line) and D (thick shaded line). Gaps between core sections
are marked by upward pointing triangles for Hole C and downward pointing, shaded triangles for Hole D.
(b) Alignment produced by the composite depth scale provided in the ODP initial report [Curry et al.,
1995] plotted versus meters composite depth (mcd). (c) Alignment of the Hole C reflectivity signal to the
Hole D signal as determined by the automatically generated mapping function with tie points shown in
Figure 9. (d) The accumulation rate of Hole C relative to Hole D. Values > 1 indicate that the algorithm

has compressed Hole C relative to Hole D.

[33] Additionally, no automated technique can com-
pletely replace the knowledge and judgment of a trained
professional. The results of this program should always be
evaluated by eye. Hiatuses or other disturbances may
produce erroneous results, and appropriate penalty weight-
ings must be chosen for each pair of signals to be
matched. Also, special attention should be paid to the
beginning and end of a match because less surrounding
data is available to constrain the match. For some data it
may be desirable to increase the rate change penalty near
the ends of the series to reduce the potential magnitude of
these errors. Generally, incorrect matches are fairly
obvious and the adjustment of penalty weightings or the
addition of a couple of tie points can quickly correct the
error.

5. Conclusions

[34] The dynamic programming algorithm proposed in
this paper does an excellent job of aligning paleoclimate

records with substantially less effort than hand tuning.
Because the algorithm is not susceptible to local solutions,
it also requires less effort to use than previously published
automated correlation techniques, which require good
initial guesses. The technique produces results that agree
well with hand-tuned series and accurately fits signals
with low signal-to-noise ratios, gaps, spectral power at a
variety of frequencies, and large changes in sedimentation
rate. In addition to making signal correlation faster and
easier, our dynamic programming technique could provide
a consistent set of criteria for the alignment of many
climate proxies, improve the resolution of composite
depth scales and stacked data, and automate comparisons
of climate proxies with proposed climate response func-
tions. However, any automatically produced correlation
should be evaluated by eye because a record may contain
unexpected complexities and because penalty weightings
may need adjustment to produce the most desirable
results. Additionally, the technique is not well suited to
orbital tuning by frequency analysis. Automated signal
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correlation by dynamic programming can be a powerful 7,
tool in the study paleoclimate signals because it offers *
speed, versatility, and the ability to find realistic global P

solutions.

Notation
p - “no match” penalty.
vy rate change penalty coefficient.
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